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NOMENCLATURE

SYSTEM MODEL:

(X,0,w) - nonlinear state equations
(

S —h

). nonlinear measurement equations

F - system matrix from linearization

G - input matrix from linearization

H - measurement matrix from linearization

X - state vector

P= {PX Py P, }T - position vector in the NED (North-
East-Down) Earth fixed frame

V= {\/X vy v, }T - velocity vector in the NED earth
fixed frame

g= {qo G O C]3}T - attitude vector as a unit
quaternion

b, = {wa By ba,Z}r - rate gyro bias vector

g - Earth’s gravitational acceleration

U={@n &} -inputvector

a= {ax ay aZ}r - true acceleration vector in the body
fixed frame
o= {a)x oy a)z}r - true rotational rates vector in the

body fixed frame
W, - acceleration sensor noise vector
W, - angular rate sensor noise vector
W, - noise vector for bias random walks

= {wa W, v‘vbT}T - process noise vector

\7T - measurement noise vector

=

ay = {amx amy amz}r - measured acceleration vector in
the body fixed frame

oy = {a)mx @y me}T - measured rotational rate
vector in the body fixed frame

Ry, - rotation matrix rotating vectors in the body fixed

frame to the earth fixed frame

Q - matrix responsible for converting angular rates in
the body fixed frame to quaternion rates

A, - barometric altitude measurement

B, - magnetic vector in Earth frame
B, - magnetic vector measurement in body frame

Z - measurement vector
y - prediction of measurements from the state vector

EXTENDED KALMAN FILTER IMPLEMENTATION:

7k - discrete time version of a vector y

@ - state transition matrix
I’ - discrete time input matrix
T - period of prediction step

T 2 2 2 2 2 2 2 2 2 _
Q =diag (O'wx ,O'wy ,Gwz ,O'ax ,Gay ,Gaz ,Gbx ,O'by ,sz )

plant/disturbance noise covariance matrix
P, - state estimate error covariance matrix
K - Kalman gain matrix
: 2 2 2 2 2 2 2 2 2 2
R =diag(op ,op,,0p,,0v,,0v,,0V,,08,,08,,08, TAlt)

measurement noise covariance matrix

SYSTEM MODEL

The dynamic system model developed here is a
kinematic model for a six DOF rigid body with position
and velocity represented in an inertial coordinate frame
(Earth fixed) and angular velocity and acceleration in a
body fixed frame. Because it is a kinematic model, it is
applicable to any vehicle, independent of the specific
dynamics of that vehicle. In addition to the dynamic
state variables, the state vector also includes bias states
for sensors, which are modeled dynamically as simple
random walks.

The development of the system model will make use of
two matrices that are stated here without derivation. The
first of these matrices is the rotation matrix as a function
of the unit quaternion.

Rig Rz R
Rpe(q)=|Ra1 Ro2 Ras 1)
R31 Rs2 Rss
where
Rip=0o” +01° —a° — a3°
Ry2 =2(d102 +dod3)
Ry3 =2(0103 —dod2)
Ro1 =2(0102 —9od3)
Ro2 =do” —01° +0p° —ds”
Ro3 =2(d203 +dody)
R31 =2(g103 +dod2)
R32 =2(d203 —0o01)

Rss =0o° — % —02% +03°

It is worthwhile to note that the inverse of the rotation
matrix is its transpose, Rbe_1 =Ry =RbeT . The second
of these matrices is used in the “strapdown” equation,
q=9(q)@/2, to relate the body axis angular velocity to
the unit quaternion rates.
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STATE VARIABLES

The state variables estimated by the INS/GPS system
are the position, velocity, attitude (unit quaternion), and
rate gyro biases.
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INPUTS

The true inputs to the dynamic system, i.e. the kinematic
system, are the true angular velocity and acceleration
vectors. However, we are modeling the INS as dynamic
system, which uses measurements of these vectors that
include noise, biases, and gravity.
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Here, the accelerometer measurement includes earth’'s
gravitational acceleration rotated into the body fixed
frame withRy,. Also, without loss of generality, the

sensor noise is shown here as subtractive rather than
additive. This is done purely for convenience in the state
equations developed below, where it will become
additive.

STATE EQUATIONS

The state equations are the derivatives of the state
variables. In general, these equations are nonlinear
functions of the state variables and inputs.

5 Y

oV lrer ©
q e
b, W,

The first three vector equations in (5) are kinematic
equations for a six DOF rigid body. The last vector
equation, for the bias states, is a random walk used to
model in a simple manner the dynamics of states that
vary slowly in a random way .

While (5) captures the kinematics of a rigid body, it is not
in the proper form for state equations. State equations
should be written as a function of the states, inputs, and
process/disturbance noise.

X = f(X,0,W)

This can be accomplished by solving (4) for the true
angular velocity and acceleration.

Then plugging these into (5) gives the state equations as

a function of the states, the inputs U = {cDmT émT}r , and

the process noise W= {\Tva v‘vaT \/‘V,DT}r .

p v
T \7 Reb(q)'(am +Wa)+{0 0 g}T
f(x,ag,w)=4 . r= 1 ~ _ (6)
q 29 (@ +w,, ~b,, )
b, W,
OUTPUTS

The outputs of the dynamic system model are variables
that are measured by sensors to be used in the
correction steps. They must be formed as a function of
the state variables.
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y=nto By| |Rpe(d)Be "
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Here, the magnetic field in the body frame is expressed
as function of the constant magnetic field in the Earth
frame and a rotation matrix that is a function of the
qguaternion. The barometric altimeter output is simply
the negative of the down component from the position
vector. There is a measurement vector from the sensors
corresponding to the output vector with the addition of
sensor noise.

Z=yY+V

The difference between these two vectors, Z-Yy, is

used in the feedback of the correction steps to correct
the states predicted in the prediction steps through
numerical integration.



LINEARIZATION

To implement the EKF it is necessary to linearize the
state equations at each calculation of the prediction step
and to linearize the output equations at each calculation
of the so correction step so that the KF equations can be
used. This linearization results in equations for the
following Jacobian matrices,

pd
oX
c-2L
oW
u-N
OX

Calculating the partial derivatives in the elements of F
gives

033 [ Iaxz | O3y7

R 0
F= Vq 3x3 (8)
010X6 qu Fqb
03x7
where
F\/qO I'_\/ql I'_\/qZ I:\/q3
FVq =~ I:\/q3 - F\/q2 I:\/ql F\/qO
I:\/qZ - I:\/q3 - F\/qO F\/ql
R/go = 2(do@mx — G3@my + d28mz)
Fugr = 2(tamy + d28my + d38m;)
Fug2 = 2(=G28mx + G@my + Godmz)
Ryg3 = 2(=Yzamyx — doamy + tamz)
0 by — Omy ba)y — Omy buz — @z
_1fox —b,x 0 @, =by by — @y
2 oy —buy Dy — O, 0 @y = byx
@7 =Dy Dy — bwy Doy — @mx 0
and
1 ..
Fop = —EQ(Q)

Calculating the partial derivatives in the elements of G
gives

03x9( )
033 | Rep (@
=| X3 | e 0753 9
Q0)/2 | 0443
0346 Iy3

Calculating the partial derivatives in the elements of H
gives

Igxs 067
H= 0356 Hpgq | 03x3 (10)
0 0 —1]0yg3 0157

where
Hgqo Heqt Heq2z Hegs
Hgg =| Hggs —Hgqz Heqt —Hgqo
—Hpgz —Hggs Hego Haa
Hgqo = 2(doBex + d3Bey —U2Be;)
Heqr = 2(diBex +d2Bey +03Bg;)
Hgg2 = 2(=02Bex + t1Bey —doBe;)
Hpgs = 2(=0U3Bex + doBey + U1 Be;)

EXTENDED KALMAN FILTER
IMPLEMENTATION

A general description of the EKF and KF are beyond the
scope of this discussion. However, a couple of details
about the specific implementation here might be
important in relating the algorithms to more general EKF
equations found in many sources. The KF algorithm is
ultimately a discrete time algorithm. At its root it is based
on a very simple discrete model of the system.

)—(k = q)ik—l + ka—l (31)
Zk = H)?k + \7k

The discrete time disturbance/process noise vector, W ,

is assumed to be white and to have a noise covariance
matrix, Q . The measurement noise, V,, is assumed to

be white and have a noise covariance matrix, R. The
fact that these are discrete time noise processes does
not present a problem because the sensors are
ultimately sampled in discrete time. In fact this is a
benefit because it is possible to directly estimate the
noise variance from data samples. The implemented
computer algorithm does make the simplifying
assumption that these matrices are diagonal, i.e. the
noise on each of the sensors is independent.

Our model is a continuous time model. Therefore, we
must therefore use some discrete time approximations
for implementation. We use the following first order
approximations.

O=1+FT
I'=GT

The INS numerically integrates the inputs, i.e. the
acceleration and angular rate measurements, to obtain
estimates of position, velocity and orientation. The
prediction step of the EKF uses the output of the INS,
and also predicts the growth of covariance of the state
estimate error. This covariance is a running
approximation of the our confidence in the estimated



state. The size of this covariance, and hopefully the true
error in the state estimate, is reduced in the correction
steps where we incorporate other sensors in a feedback
loop.

INS/GPS ALGORITHM

PREDICTION STEP
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X =Reg+ [T ey, Gt (p1)
normalize quaternion (p2)
calculate F and G (p3)
P =(I+FT)P_;(1+FT)" + T2GQG' (p4)

CORRECTION/UPDATE STEP

calculate H (c1)
calculate yj (c2)
serial update (c3)

K=PH' (HP,H' +R)*!
X =X + K(Z = i)
P, =P, —KHP,
normalize quaternion (c4)

Step (pl) is completed in RungeKutta(X,U,dT). It
implements a numerical integration with a fourth order
Runga Kutta algorithm through function calls to
StateEq(X,U,Xdot), whichimplements (6).

Step (p3) is completed in LinearizeFG(X,U,F,G). It
implements (8) and (9)

Step (p4) is completed in
CovariancePrediction(F,G,Q,dT,P). It estimates
the growth in the covariance of the state estimate error
due to the process noise.

Step (cl) is completed in LinearizeH(X,Be,H). It
implements (10) .

Step (c2) is completed in MeasurementEq(X,Be,Y).
It implements (7) .

Step (c3) is completed in
SerialUpdate(H,R,Z,Y,P,X,SensorsUsed) .
While it implements the equivalent of the equations
shown in this step, it does so with a very different
algorithm. The equations are implemented in a serial
update algorithm treating each scalar measurement
separately [1, ch 4.2][2, ch 4.5]. This avoids finding the
matrix inverse by replacing it with scalar divisions. It is
computationally efficient and numerically stable.
Furthermore, it allows any chosen subset of sensors to
be used in a single correction step. The use of this
serial update algorithm is possible because the noise for

each of the measurements is assumed to be
uncorrelated, i.e. the covariance matrix, R, is diagonal.
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