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NOMENCLATURE 

SYSTEM MODEL: 

),,( wuxf


 - nonlinear state equations 

)(xh


- nonlinear measurement equations 
F  - system matrix from linearization  
G  - input matrix from linearization 
H  - measurement matrix from linearization 
x


 - state vector 

 Tzyx PPPP 


 - position vector in the NED (North-

East-Down) Earth fixed frame  

 Tzyx VVVV 


 - velocity vector in the NED earth 

fixed frame 

 Tqqqqq 3210


 - attitude vector as a unit 

quaternion 

 Tzyx bbbb  


 - rate gyro bias vector 

g  - Earth’s gravitational acceleration 

 mm au
   - input vector 

 Tzyx aaaa 


 - true acceleration vector in the body 

fixed frame 

 Tzyx  


 - true rotational rates vector in the 

body fixed frame 

aw


 - acceleration sensor noise vector 

w


 - angular rate sensor noise vector 

bw


 - noise vector for bias random walks  

 TT
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T
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  - process noise vector 
Tv


 - measurement noise vector 

 Tmzmymxm aaaa 


 - measured acceleration vector in 

the body fixed frame 

 Tmzmymxm  


 - measured rotational rate 

vector in the body fixed frame 

ebR  - rotation matrix rotating vectors in the body fixed 

frame to the earth fixed frame 
Ω  - matrix responsible for converting angular rates in 

the body fixed frame to quaternion rates 

bA  - barometric altitude measurement 

eB  - magnetic vector in Earth frame 

bB  - magnetic vector measurement in body frame 

z


 - measurement vector 
y


 - prediction of measurements from the state vector 

 

EXTENDED KALMAN FILTER IMPLEMENTATION: 

k


 - discrete time version of a vector   

Φ  - state transition matrix 
Γ  - discrete time input matrix 
T  - period of prediction step 

),,,,,,,,( 222222222
zyxzyxzyx bbbaaadiag  Q  - 

plant/disturbance noise covariance matrix 

kP  - state estimate error covariance matrix 

K  - Kalman gain matrix 

),,,,,,,,,( 2222222222
AltBBBVVVPPP zyxzyxzyx

diag R  - 

measurement noise covariance matrix 
 
 
 
SYSTEM MODEL 

The dynamic system model developed here is a 
kinematic model for a six DOF rigid body with position 
and velocity represented in an inertial coordinate frame 
(Earth fixed) and angular velocity and acceleration in a 
body fixed frame.  Because it is a kinematic model, it is 
applicable to any vehicle, independent of the specific 
dynamics of that vehicle.  In addition to the dynamic 
state variables, the state vector also includes bias states 
for sensors, which are modeled dynamically as simple 
random walks.  

The development of the system model will make use of 
two matrices that are stated here without derivation.  The 
first of these matrices is the rotation matrix as a function 
of the unit quaternion. 
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It is worthwhile to note that the inverse of the rotation 

matrix is its transpose, T
beebbe RRR 1 .  The second 

of these matrices is used in the “strapdown” equation, 
2/)(  qq Ω , to relate the body axis angular velocity to 

the unit quaternion rates. 
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STATE VARIABLES 

The state variables estimated by the INS/GPS system 
are the position, velocity, attitude (unit quaternion), and 
rate gyro biases. 
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INPUTS 

The true inputs to the dynamic system, i.e. the kinematic 
system, are the true angular velocity and acceleration 
vectors. However, we are modeling the INS as dynamic 
system, which uses measurements of these vectors that 
include noise, biases, and gravity. 
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Here, the accelerometer measurement includes earth’s 
gravitational acceleration rotated into the body fixed 
frame with beR .  Also, without loss of generality, the 

sensor noise is shown here as subtractive rather than 
additive.  This is done purely for convenience in the state 
equations developed below, where it will become 
additive.   

 
STATE EQUATIONS 

The state equations are the derivatives of the state 
variables. In general, these equations are nonlinear 
functions of the state variables and inputs.  
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The first three vector equations in (5) are kinematic 
equations for a six DOF rigid body. The last vector 
equation, for the bias states, is a random walk used to 
model in a simple manner the dynamics of states that 
vary slowly in a random way . 
 

While (5) captures the kinematics of a rigid body, it is not 
in the proper form for state equations.  State equations 
should be written as a function of the states, inputs, and 
process/disturbance noise. 
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This can be accomplished by solving (4) for the true 
angular velocity and acceleration. 
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Then plugging these into (5) gives the state equations as 

a function of the states, the inputs  TT
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the process noise   TT
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OUTPUTS 

The outputs of the dynamic system model are variables 
that are measured by sensors to be used in the 
correction steps.  They must be formed as a function of 
the state variables.   
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Here, the magnetic field in the body frame is expressed 
as function of the constant magnetic field in the Earth 
frame and a rotation matrix that is a function of the 
quaternion.  The barometric altimeter output is simply 
the negative of the down component from the position 
vector. There is a measurement vector from the sensors 
corresponding to the output vector with the addition of 
sensor noise. 

 vyz
   

 
The difference between these two vectors, yz

  , is 

used in the feedback of the correction steps to correct 
the states predicted in the prediction steps through 
numerical integration. 

 



LINEARIZATION 

To implement the EKF it is necessary to linearize the 
state equations at each calculation of the prediction step 
and to linearize the output equations at each calculation 
of the so correction step so that the KF equations can be 
used. This linearization results in equations for the 
following Jacobian matrices,  
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Calculating the partial derivatives in the elements of F  
gives 
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Calculating the partial derivatives in the elements of G  
gives 
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Calculating the partial derivatives in the elements of H  
gives 
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EXTENDED KALMAN FILTER 
IMPLEMENTATION 

A general description of the EKF and KF are beyond the 
scope of this discussion.  However, a couple of details 
about the specific implementation here might be 
important in relating the algorithms to more general EKF 
equations found in many sources. The KF algorithm is 
ultimately a discrete time algorithm. At its root it is based 
on a very simple discrete model of the system. 
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The discrete time disturbance/process noise vector, kw


, 

is assumed to be white and to have a noise covariance 
matrix, Q .  The measurement noise, kv


, is assumed to 

be white and have a noise covariance matrix, R . The 
fact that these are discrete time noise processes does 
not present a problem because the sensors are 
ultimately sampled in discrete time.  In fact this is a 
benefit because it is possible to directly estimate the 
noise variance from data samples.  The implemented 
computer algorithm does make the simplifying 
assumption that these matrices are diagonal, i.e. the 
noise on each of the sensors is independent.   

Our model is a continuous time model.  Therefore, we 
must therefore use some discrete time approximations 
for implementation.  We use the following first order 
approximations.  
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The INS numerically integrates the inputs, i.e. the 
acceleration and angular rate measurements, to obtain 
estimates of position, velocity and orientation.  The 
prediction step of the EKF uses the output of the INS, 
and also predicts the growth of covariance of the state 
estimate error. This covariance is a running 
approximation of the our confidence in the estimated 



state.  The size of this covariance, and hopefully the true 
error in the state estimate, is reduced in the correction 
steps where we incorporate other sensors in a feedback 
loop. 

 

INS/GPS ALGORITHM 

PREDICTION STEP 
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quaternionnormalize  (p2) 

 
GF    andcalculate  (p3) 
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CORRECTION/UPDATE STEP 

 
H  calculate  (c1) 

 
kycalculate
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updateserial  (c3) 
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Step (p1) is completed in RungeKutta(X,U,dT). It 
impIements a numerical integration with a fourth order 
Runga Kutta algorithm through function calls to 
StateEq(X,U,Xdot), which implements (6). 

Step (p3) is completed in LinearizeFG(X,U,F,G). It 
implements (8) and (9) 

Step (p4) is completed in 
CovariancePrediction(F,G,Q,dT,P). It estimates 
the growth in the covariance of the state estimate error 
due to the process noise. 

Step (c1) is completed in LinearizeH(X,Be,H). It 
implements (10) . 

Step (c2) is completed in MeasurementEq(X,Be,Y). 
It implements (7) . 

Step (c3) is completed in 
SerialUpdate(H,R,Z,Y,P,X,SensorsUsed). 
While it implements the equivalent of the equations 
shown in this step, it does so with a very different 
algorithm.  The equations are implemented in a serial 
update algorithm treating each scalar measurement 
separately [1, ch 4.2][2, ch 4.5].  This avoids finding the 
matrix inverse by replacing it with scalar divisions.  It is 
computationally efficient and numerically stable.  
Furthermore, it allows any chosen subset of sensors to 
be used in a single correction step.  The use of this 
serial update algorithm is possible because the noise for 

each of the measurements is assumed to be 
uncorrelated, i.e. the covariance matrix, R , is diagonal.   
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