
LibrePilot System Architecture

Eric Price

June 30, 2017

Abstract

LibrePilot is an Open Source Avionics Solution for Unmanned Aerial Vehicles (UAV), Model Aircraft and other robots.
It implements sensor fusion as well as fully con�gurable Steering, Control, Guidance and autonomous Navigation and runs
on a �ight controller circuit board. It interfaces with remote control receivers, GPS, IMU, Barometer and other sensors
and controls a number of actuators such as brushless engines, navigation lights, buzzers, servos, etc...

Contents

1 Hardware Architecture 2

2 Software Architecture 3

2.1 Ground Control Software . 3
2.2 Flight �rmware . 3
2.3 UAVObjects . 3

2.3.1 UAVTalk protocol . 3
2.3.2 Settings UAVObjects . 4
2.3.3 Data UAVObjects . 4

2.4 GCS Plugins . 4
2.5 Flight Firmware Modules . 4

3 Control Architecture 5

3.1 Manual Control . 5
3.2 Stabilized Control . 6

3.2.1 Rate Control . 6
3.2.2 Attitude Control . 6

3.3 Autopilot Control . 6

4 Source Code Repository 7

1

1 Hardware Architecture

Figure 1: Hardware Architecture

A typical UAV or Model Aircraft will be controlled by a human operator with a remote control transmitter. It's signals will
be received by some sort of receiver, which in some cases would directly control the actuators. In case of multicopers and
other vehicles with augmented control, a �ight controller sits in between to interpret the control commands, then runs control
algorithms on the vehicle. For this it is fusing information from integrated sensors typically forming an Inertial Measurement
Unit (IMU) as well as possible auxiliary sensors such as a GPS receiver. The controller then steers the actuators such as
engine controllers and servos.

2

2 Software Architecture

Figure 2: Software Architecture

2.1 Ground Control Software

The Ground Control Software (GCS) is typically running on a laptop. It is connected to the Flight Controller using USB,
serial cables or some form of radio telemetry. The GCS is used to con�gure the Flight Controller and to monitor and log
�ight telemetry data. It can also act as a bridge for hardware in the loop simulation. It is implemented in C++ using the
platform independent Qt5 framework.

2.2 Flight �rmware

The Flight Firmware is running on the embedded Flight Controller and can operate both while connected to GCS or
independently. It is implemented in Embedded C and C++ using the FreeRTOS embedded real time operating system and
typically runs on ARM architecture micro controllers. Using a FreeRTOS emulator (�simposix�) the Flight Firmware can
also be run on a (Linux)-PC for simulation and test purposes.

The LibrePilot Flight Firmware utilizes a hardware abstraction layer named �PiOS� on top of the FreeRTOS base, as well
as a custom scheduler for delayed callback functions with realtime scheduling guarantees. PiOS contains drivers for various
communication devices, sensors, actuators, persistent memory, etc... It allows accessing these using hardware independent
abstract interfaces.

2.3 UAVObjects

All data is kept in well de�ned data containers called UAVObjects, which are de�ned at compile time using XML-description.
Both persistent settings and transient run time data is kept in UAVObjects. Any de�ned UAVObject can be exchanged and
modi�ed by both GCS and Flight Firmware based on de�ned policies. Typically this is usually done using the UAVTalk
Protocol.

2.3.1 UAVTalk protocol

The UAVTalk protocol is typically used to exchange UAVObjects between components that share the same set of de�ned
objects. Typically the Flight Firmware and the GCS. UAVTalk implements messages to

• To send a UAVObject to the other side (with or without request for acknowledgement).

• To request the other side to send a speci�c UAVObject.

• To acknowledge a received object.

3

2.3.2 Settings UAVObjects

Settings UAVObjects are typically modi�ed only on the GCS, then sent once per modi�cation to the Flight Firmware. They
are loaded at boot Time from Non Volatile Memory on the �ight controller. The GCS can instruct the Flight Firmware to
store such a UAVObject to Non volatile Memory. All settings are retrieved from the Flight Controller by the GCS when a
new connection is established to synchronize the con�guration. In the GCS, Settings can also be exported to or imported
from disk.

2.3.3 Data UAVObjects

Data UAVObjects store runtime values such as sensor data, control commands or status information. They are typically only
sent from the Flight Firmware to the GCS, usually at periodic intervals. A notable exception are control objects. These are
data objects which are used to in�uence the runtime behavior, such as objects used for the Connection Handshake between
GCS and Flight Firmware or for sending speci�c control commands for example to instruct the Flight Firmware to save a
speci�c Settings Object to Flash memory or to Erase it. Data Objects can be Single- or Multi-Instance objects, examples
for the latter are Waypoints in a navigation Route. These are also Control Objects.

2.4 GCS Plugins

Software components of the GCS are implemented as Plugins. Each plugin de�nes optional user interface widgets, which can
be displayed on a tab within the GCS. For each plugin one or multiple widgets can be con�gured, each with its own settings.

Examples for plugins are:

• Primary Flight Display - It displays an arti�cial horizon as well as a large amount of data

• OPMap - It displays a world map and the location of the vehicle as well as waypoints and other locations on it.

• System health - It displays a colorful display of the state of various alarms.

• Scope - Scopes can graphically display the content of any UAVObject such as sensor data at runtime, as well as log
their contents to a CSV �le.

• UAVObjectBrowser - The UAVObjctBrowser allows to display and modify the contents of every de�ned UAVObject,
instruct the Flight Firmware to load, save or dele a UAVObject from Flash memory, and modify the data transfer rules
and intervals for all UAVObjects.

• ...

Plugins usually operate on one or more UAVObjects which are either read and displayed or modi�ed or both. Each modi�-
cation of any UAVObject - for example when it is received from the �ight �rmware or modi�ed by another plugin - triggers
an event which any plugin can respond to.

2.5 Flight Firmware Modules

Software components within the Flight Firmware are implemented as Modules. Modules can exist both in form of threads
or callback functions.

Their execution can be triggered either by hardware events (such as availability of new sensor data) or by the update of
speci�c UAVObjects.

Modules communicate exclusively using UAVObjects, both between each other and with the GCS.
Examples for Firmware modules are:

• Sensors Module - This module receives data from the controllers on board sensors such as Gyroscope, Accelerometer
and stores the measurement data in their respective UAVObjects: GyroSensor, AccelSensor, ...

• Receiver Module - This module receives data from the connected �ight control receiver, veri�es its integrity and possible
failsafe situations and stores the result in respective UAVObjects: ManualControlCommand

• ManualControl Module - This module interprets the data in ManualControlCommand and sets other UAVObjects
based on the �ight mode and control input. This includes the FlightStatus UAVObject itself which stores the current
�ight mode, engine arming state, etc..

• StateEstimation Module - This module fuses data from various sensors using �lters and calculates derived state in-
formation. The most important derived state UAVObject is AttitudeState which holds the vehicles orientation in 3d
space. The Attitude can not be measured directly but only using one of several implemented �lters.

• Stabilization Module - This module reads the control set point for �ight control from the StabilizationDesired UAVOb-
ject - set for example by the PathFollower or by ManualControl - and calculates the required control output stored in
the ActuatorDesired UAVObject

4

• Actuators Module - This module reads the desired control output from ActuatorDesired, applies the Mixer Matrix and
drives servos and engines accordingly.

• Telemetry Module - This module is responsible for exchanging and synchronizing UAVobjects with the GCS utilizing
a com device.

• PathPlanner - This module implements the navigation computer as a state machine. Waypoints and pathactions
are interpreted to de�ne behaviors and transition conditions. The current behavior is written to the PathDesired

UAVObject, and then interpreted by the

• PathFollower - This module is the �autopilot� of the �ight controller. It interprets the behavior in PathDesired which
- depending on �ight mode - can be set by either the ManualControl module or by the PathPlanner navigation
computer. It runs vehicle speci�c control loops and eventually calculates the set point for the �ight stabilization stored
in StabilizationDesired.

• ...

3 Control Architecture

The control architecture is dependent on �ight mode and settings. This document describes a few noteworthy examples and
how they are implemented.

All Modes share a common vehicle agnostic control channel abstraction, where each control channel can assume values
between -1 and +1. The following control channels are de�ned, as seen in the ActuatorDesired UAVObject:

• Roll - De�nes the control command for rotation around the X axis, mapped to actuators for example using aileron
servos or di�erential thrust between left and right rotors. 0 means neutral, +1 means maximum clockwise rotation, -1
means maximum counter clockwise rotation.

• Pitch - De�nes the control command for rotation around the Y axis, mapped to actuators for example using elevator
servos or di�erential thrust between back and front rotors. 0 means neural, +1 means maximum nose up rotation, -1
means maximum nose down rotation.

• Yaw - De�nes the control command for rotation around the Z axis, mapped to actuators for example using rudder servo
or di�erential thrust between clockwise and counter clockwise rotating rotors, or speed of a tail-propeller. 0 means
neutral, +1 means maximum nose right rotation, -1 means maximum nose left rotation.

• Thrust - De�nes the control command for the actuator that controls energy. For a �xed wing or multirotor craft this
might be collective engine throttle, for a glider it might be applied in reverse to breaking �aps. For a helicopter it might
be collective pitch. 0 means neutral, +1 means maximum positive thrust (full throttle) -1 means maximum negative
thrust (maximum break or reverse thrust)

These virtual control channels are mapped to physical actuators using a Mixer Matrix which is stored in the MixerSettings

UAVObject along with information about the channel type.

M =

Roll P itch Y aw Thrust
Channel 1 m1,1 m1,2 m1,3 m1,4

Channel 2 m2,1 m2,2 m2,3 m2,4

Channel 3 m3,1 m3,2 m3,3 m3,4

Channel 4 m4,1 m4,2 m4,3 m4,4

...

3.1 Manual Control

In Manual Control Mode, the ManualControlCommand coming from the control receiver is directly fed to ActuatorDesired.
As such the �ight controls directly steer the actuators in open loop control. The pilot actuating the control transmitter
closes the loop using hand eye coordination or relies on aerodynamic �ight stability.

〈 Flight
Control
Receiver

〉
⇒

Receiver
Module

(Output = Input)
⇒ [ManualControlCommand]⇒

⇐=

↪→⇒
ManualControl

Module
(Output = Input)

⇒ [ActuatorDesired]⇒
Actuator
Module

(Output+ Input ∗M)
⇒ 〈Actuators〉

5

3.2 Stabilized Control

In Stabilized Control Mode, the ManualControlCommand from the receiver is fed into StabilizationDesired. In Rate mode,
a single PID control loop is used for control, while in Attitude mode, two cascaded PID loops are used where the outer loop
controls the angular velocity setpoint based on attitude error, and the inner loop controls the actuator based on angular
velocity errors.

3.2.1 Rate Control

〈 Flight
Control
Receiver

〉
⇒ · · · ⇒

ManualControl
Module

(Output = Input)
⇒ [StabilizationDesired]

〈
Gyroscope
Sensor

〉
⇒

Sensors
Module

(Output = k ∗ Input+ b)
⇒ [GyroSensor]⇒

StateEstimation
Module

(Output = Input+ bias)
⇒ [GyroState]

⇒

⇐=

↪→⇒
Stabilization

Module
(Output = PID (Input, k))

⇒ [ActuatorDesired]⇒ · · ·

3.2.2 Attitude Control

〈 Flight
Control
Receiver

〉
⇒ · · · ⇒

ManualControl
Module

(Output = Input)
⇒ [StabilizationDesired]

〈
Gyroscope
Sensor

〉
〈

Accelerometer
Sensor

〉
· · ·

⇒ · · · ⇒
StateEstimation

Module
(Output = EKF (Input))

⇒
{

[GyroState]
[AttitudeState]

}

⇒

⇐=

↪→⇒
Stabilization

Module
(Output = PID (PID (Input, k)))

⇒ [ActuatorDesired]⇒ · · ·

3.3 Autopilot Control

In control Modes that involve the Autopilot, the craft is �own by the Flight Controller based on the trajectory instructions
in the PathDesired UAVObject. This is initialized to the current position in �Position Hold�, set dynamically based on the
ManualControlCommand in various assisted �ight modes, or might even be set by the Navigation Computer implemented
in PathPlanner module, which traverses a conditional graph of waypoint coordinates.

ManualControl | PathP lanner
Module

⇒ [PathDesired]

〈
GPS
Sensor

〉
〈

Barometer
Sensor

〉
· · ·

⇒ · · · ⇒
StateEstimation

Module
(Output = EKF (Input))

⇒

[PositionState]
[V elocityState]
[AttitudeState]

· · ·

⇒

⇐=

↪→⇒
PathFollower

Module
(Output = F (Input))

⇒ [StabilizationDesired]⇒ · · ·

The control algorithm F varies based on vehicle type and also the PathMode requested in the PathDesired UAVObject.
At the time of writing this document the supported control modes are:

• GoToEndpoint - The Autopilot will try to hold position at a �xed end-coordinate. If elsewhere, the craft will steer
towards the coordinate but not necessarily in a straight line as drift will not be compensated.

• FollowVector - The Autopilot will try to �y in a straight line from the start to the end-coordinate and possibly beyond.
The craft will �y in a straight line and correct any sideways deviation from the desired path.

6

• CircleRight,CircleLeft - The Autopilot will try to circle around the end-coordinate in a �xed distance given by the start
coordinate. The craft will correct distance deviations.

• FixedAttitude - The Autopilot will set a �xed attitude as a setpoint for Stabilization - regardless of orientation or
velocity.

• SetAccessory - The Autopilot will set auxiliary output channels, for example to blink lights, open payload bays, lower
or rise gear, ...

• DisarmAlarm - The Autopilot will initiate an autonomous disarming sequence which will cut power/fuel to all engines.
Useful after landing...

• Land - The Autopilot will engage a hardcoded, fully automated landing sequence.

• Brake - This is used internally by assisted �ight modes to slow down.

• Velocity - The Autopilot will attempt to maintain a velocity in 3d space.

• AutoTakeo� - The Autopilot will engage a hardcoded, fully automated takeo� sequence.

It is needless to say that correct function of the autopilot is dependent on a myriad of factors, including but not limited to

• correct calibration of all sensors

• suitable tuning of Stabilization PID coe�cients

• suitable tuning of the Autopilots own control parameters

4 Source Code Repository

Source code for LibrePilot can be found through the project web page https://www.librepilot.org/site/index.html or
directly under https://bitbucket.org/librepilot/.

7

https://www.librepilot.org/site/index.html
https://bitbucket.org/librepilot/

	Hardware Architecture
	Software Architecture
	Ground Control Software
	Flight firmware
	UAVObjects
	UAVTalk protocol
	Settings UAVObjects
	Data UAVObjects

	GCS Plugins
	Flight Firmware Modules

	Control Architecture
	Manual Control
	Stabilized Control
	Rate Control
	Attitude Control

	Autopilot Control

	Source Code Repository

